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INTRODUCTION 

This report  summarizes progress made on NASA Grant NAG-1-392 during 

the period February 19, 1986 through August 18, 1986. The goal of the 

pro jec t  i s  t o  develop mathematical models and associated solution 

procedures which can be used t o  design heat pipe cooled s t ruc tures  f o r  

use on hypersonic vehicles. The  models should a l so  have the capabi l i ty  

t o  pred ic t  off-design performance f o r  a var ie ty  of operating conditions. 

I t  i s  expected t h a t  the  resul t ing models can be used t o  predict  s t a r tup  

behavior of  l iquid metal heat pipes t o  be used in reentry vehicles,  

hypersonic a i  r c r a f t  and space nuclear reactors.  

Previous reports in  t h i s  ser ies  (February 1985, September 1985 and 

June 1986) have covered the development of governing d i f f e ren t i a l  

equations which can be used t o  predict  s ta r tup  behavior of i n i t i a l l y  

frozen l iqu id  metal heat pipes. The June 1986 report  covered the 

development o f  f i n i t e  element based numerical equations f o r  the  outer  

shel l  and the  combination capi l lary s t ruc ture  and working f lu id .  One and 

two dimension t rans ien t  solutions were presented. 

The current report  covers mathematical models and sample solut ions 

for- the vapor region. The heat pipe considered i s  rectangular,  the 

working vapor i s  sodium and the i n i t i a l  temperature i s  su f f i c i en t ly  low 

so t h a t  the capi l la ry  s t ruc ture  i s  f i l l e d  with so l id  sodium. 

ANALYSIS OF VAPOR FLOW IN HEAT PIPES 

Analysis o f  the hydrodynamics of vapor flow in heat pipes with 

meta l l ic  working f lu ids  indicates  considerable d i f f i c u l t i e s  a t  low vapor 

pressure due t o  the extremely small vapor dens i t ies .  Even f o r  
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r e l a t ive ly  small heat t r ans fe r  r a t e s ,  t he  vapor veloci ty  in  the axial 

d i rec t ion  can be very large and accelerated towards sonic velocity by 

f r i c t i o n  a t  the interface.  Additional heat input causes choking a t  

the condenser i n l e t .  Such behavior makes i t  necessary t o  include vapor 

compressi bi 1 i ty  and viscous action in mathematical model s. Vapor 

pressure drop due t o  f r i c t i o n  can not be recovered completely in the 

condensation section. T h u s ,  the  temperature d i s t r ibu t ions  along 

the length of the heat pipe are not isothermal and thermal res is tance 

in  the  vapor region i s  s ignif icant .  Therefore, s tudies  of the 

d i s t r ibu t ions  of temperature, pressure, and veloci ty  i n  the vapor 

passage along the length of a heat pipe a re  essent ia l  f o r  an evaluation 

of the  maximum heat t r ans fe r  ra tes  and prediction of cor rec t  

heat pipe performance. 

A summary of the  l i t e r a t u r e  on hydrodynamic processes in vapor flow 

of cy1 indrical  heat pipes made by Tien [l] and Ivanovski i e t .  a1 . [Z] 
indicates  t h a t  no completely detailed invest igat ion has been 

presented t h u s  f a r .  Moreover, experimental measurements of pressure 

and veloci ty  f o r  metal l ic  working f lu ids  have not been reported. 

In the present paper, an analysis  of the  steady, 

compressible, one-dimensional, laminar flow of sodium vapor i s  presented 

f o r  the case of a f l a t  pla.te-type heat pipe w i t h  asymmetrical 

boundary condi'tions. In addition, shear s t r e s s  a t  the 1 iquid-vapor 

in te r face ,  var ia t ions  of vapor qua l i ty ,  and momentum and energy 

fac tors  a re  considered. A s imi l a r i t y  solut ion f o r  a semiporous 

channel i s  used t o  provide the velocity p ro f i l e  a t  cross sect ions.  
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1. Simi 1 a r i  ty  Sol u t ion  for Semi porous Channel 

Governing D i f f e r e n t i a l  Equations 

A sketch o f  t he  geometry for a semiporous channel i s  g iven i n  F igure  

1. The f o l l o w i n g  assumptions are  made : t h a t  t h e  f l u i d  f l o w  i s  

incompress ib le  and laminar ,  and t h a t  t h e  p r o p e r t i e s  o f  t h e  f l u i d  a re  

constant.  The w id th  o f  t he  channel i s  assumed much g r e a t e r  than 

the  he igh t .  Therefore, two-dimensional f l o w  i s  considered. F u l l y  

developed f low i s  assumed i n  the  channels. A constant  i n j e c t i o n  o r  

suc t i on  v e l o c i t y  i s  used. W i t h  these assumptions, t h e  Navier-Stokes 

equat ions f o r  two-dimensional steady s t a t e  incompress ib le  laminar  f l o w  

are  w r i t t e n  as 

and t h e  c o n t i n u i t y  equat ion i s  

au av* 
a2 ay 
- + - =  0 (3) 

The boundary cond i t i ons  used on t he  channel sur faces are  

a t  y = 0 (solid w a l l )  

a t  y = D (porous w a l l )  

. .  u = 0, and v* = o 

u = 0, and v* = vo* 
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- v, : In jec t ion ,  depicted.  

V, : Suction. 

Figure 1. Schematic diagram o f  a semi porous channel. 
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Similarity Transformations 

The governing equations can be transformed into total 
differential equations by the use of a dimensionless length 

coordinate, X I  and a dimensionless function, f, which automatically 

satisfies the continuity equation. The new variables are defined as 

Y 

vo*z 
where V(z) = U*(O) - D 

and U*(O) is the average velocity at z = 0. Then, the local velocity can 

be expressed by the new variables as follows 

Use of equations(l), (Z), and (6) t o  (9) gives 

A & -  *[ vo * ff' - f"] p ax - v~ 
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Siiice the r i g h t  s ide  of  equation (11) 

only, d i f f e ren t i a t ing  w i t h  respect t o  X yie lds  

On taking the der ivat ive with respect t o  A ,  

and integrat ing,  equation (10) becomes 

Reo [ ( f ' ) '  - f f " ]  + f ' "  = - A 

i s  a function of X 

(1') 

using equation (12) , 

vo*D 2 
and A = - 

UP ax where Reo = - v 

The transformed boundary conditions a re  wri t ten a s  

f ' = f = O  

f ' = O ,  f = l  

a t  X = 0 (sol id  wall) 

a t  = 1 (porous wall) 

Solution of  Equation 

The d i f f e ren t i a l  equation(l3) together with the associated 

boundary conditions cons t i tu te  a nonlinear boundary value problem with the 

parameter Re,. Since the  governing equations a re  no longer pa r t i a l  

d i f f e ren t i a l  equations, they can be solved numerically by the Runge- 

Kutta integrat ion method. However, the number of boundary conditions i s  

not enough t o  solve the  equat ion(l3) .  Therefore, f o r  each 

specif ied ReO, the value of A and f" (0)  a r e  guessed t o  solve the system 
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of the f i r s t  order d i f fe ren t ia l  equations, Then, a t  X = l(porous 

wal l ) ,  the  calculated values of f '  and f a r e  compared with the given 

boundary conditions. When both val ues are  not acceptabl e ,  other  Val ues 

a re  used unt i l  the  tolerance i s  s a t i s f i ed .  When wall Reynolds numbers f o r  

suction a re  grea te r  than 13,  separation occurs on the so l id  wall. 

S imi la r i ty  solut ions a re  valid for wall Hence, 

the equation i s  solved fo r  wall Reynolds numbers ranging from - 30 t o  13. 

Reynolds numbers up t o  13. 

A comparison of the present r e s u l t s  with those found i n  

the l i t e r a t u r e  [3 ,4] ,  which used the perturbation method fo r  small 

Reynol ds  numbers , and a di f ferent numeri cal scheme I veri f i es the 

accuracy of the  numerical sol u t i o n .  

The velocity p ro f i l e s  f o r  the suction and inject ion sections are  

shown in Figures 2 and 3.  Asymmetric boundary conditions means tha t  the 

veloci ty  p ro f i l e s  a re  asymmetric. For in jec t ion ,  Reo<O, the  location o f  

the  maximum veloci ty  s h i f t s  from the center  of channels t o  the 

so l id  wall. Thus ,  in ject ion increases f r i c t i o n  a t  the so l id  wall, and 

decreases f r i c t i o n  a t  the porous wall. As wall Reynolds numbers 

increase,  the degree of sh i f t i ng  is large.  However, the general 

shape i s  changed l i t t l e .  For suct ion,  Reo > 0 ,  the location of the  

peak veloci ty  s h i f t s  toward the  porous wall. Hence, suction increases 

f r i c t i o n  a t  the  porous wall and decreases f r i c t i o n  a t  t he  so l id  wall. 

Unlike in jec t ion ,  separation appears around a wall Reynolds number of 13.  

The veloci ty  p ro f i l e s  change considerably with wall Reynolds numbers. 

In general ,  f r i c t i o n  f o r  the semiporous channel i s  l a rge r  than tha t  f o r  the 

impermeable channel. 

U 
1 
1 
I 
I 
I 
1 
I 
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Figure 2. Velocity prof i les  w i t h  wall i n j ec t ion  i n  a semiporous channel. 
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Figure 3.  Velocity prof i les  with wall suct ion in a semiporous channel. 

- 9 -  



2. Compressible Vapor Flow Anjilysi s 

Steady, compressible, one-dimensional laminar flow in a heat pipe 

is considered. The heat pipe under study is shown schematically in 

Figure 4. For purposes of formulating the mass, momentum, and energy 

equations in one-dimensional form, the velocity is taken to be the 
* ,  

average velocity, which is approximated by the velocity distributions based 

on the similarity solution of semiporous channels. Shear stress at 

the interface and the momentum and energy factors are similarly calculated 

and shown in Figure 5. The vapor is evaporated at the liquid-vapor 

interface with mass injection rate, mo , per unit area. It is assumed 

that this vapor flows inward with a normal component o f  velocity only, 

and joins the axial flowing stream. 

Principle Governing Equations 

The principles o f  conservation of mass, momentum, and energy in 

the axial direction, and the previously mentioned assumption, yield 

d 
dz D - ( p V )  = Go 

* 3  

VOL D?E [ pV(h + ‘$1 = i 0 0  (h + - 2 ) 
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where D i s  the thickness of the heat pipe and h i s  the  vapor enthalpy. 

The f r i c t i o n  fac tor ,  F, of the surfaces i s  writ ten a s  

F = -  (19) 
PV2 

The momentum and energy factors ,  a and P I  respectively,  are  expressed 

as 

D 

DV2 o 
a = L /  u 2 d y  

D 

DV3 o 
p- I u3 dy 

The normal velocity of the  vapor a t  the  in te r face  is  expressed in  

terms o f  the  heat f lux and la ten t  heat of vaporization as  follows 

The f l u i d  in  the  vapor passage of the heat pipe i s  assumed t o  be 

a mixture of l iquid and monotonic vapor. T h u s ,  the  qua l i ty  of the vapor 

i s  considered. The spec i f ic  volume v and the enthalpy h a re  expressed as 

h = hf + x hfg 
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The spec i f i c  volume o f  the  saturated vapor can be approximated by 

RT 
9 p  

v = -  

Also, the temperature and pressure a re  re la ted  by the  Clausius- 

C1 apyron equat i on : 

where h f g  i s  the enthalpy o f  saturated l i qu id ,  vf and vg a r e  the spec i f i c  

volume o f  saturated l iqu id  and vapor, respect ively,  and X i s  the  vapor 

qual i t y  . 
Formulations of Different ia l  Equations 

Bankston e t .  a1.[5] showed t h a t  var ia t ion o f  the  momentum and 

energy f ac to r s  w i t h  axial distance and radial  Reynolds numbers' i s  very 

small except near the  end of the  heat pipe. Also, Figure 5 shows both a 

and a r e  nearly independent o f  the  radial  Reynolds numbers except near 

separation. These r e su l t s  a are taken from the ca lcu la t ions  f o r  the 

simi l a r i  t y  solut ion o f  the semiporous channel s. Therefore, i t  i s  assumed 

t h a t  the der iva t ive  o f  a and w i t h  respect t o  axial  dis tance i s  equal 

t o  zero. In addi t ion,  assuming vf  and h f g  a re  constant quan t i t i e s ,  and 

combining equations (16) t h r u  (26) y e lds  the axial  gradients  f o r  the 

densi ty ,  qua l i t y ,  veloci ty ,  pressure and temperature. 

- 14 - 



Density 

The d i f f e ren t i a t ion  of  equation (25) with respect t o  z gives 

dv l d p + A d T  V A = -  
dZ P dZ T dZ 

Subst i tut ion of equation(26) in to  the equation above y ie lds  

The der ivat ive of spec i f ic  volume in the z-direction i s  written as  

With the prescribed assumption f o r  v f ,  subs t i tu t ion  of equation (28) 

i n to  (29) obtains 

dv dx d P  
dZ 

A l s o ,  the  der iva t ive  o f  specif ic  volume and density a re  re la ted 

as  follows 

& _ .  1 dv  
2 dZ 

- - - -  
dZ v 

From equations (30) and (31), the expression of density in  

d i f f e ren t i a l  form can be written as 
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Qual i ty 

From equation(9),  the quali ty gradient i s  expressed as  

( 3 3 )  

Subst i tut ion of equation (31), equations of the conservation of 

mass, and momentum in to  equation (33) y ie lds  

(34) 

Velocity 

The equation of the conservation of mass can be expressed as follows 

. 
- -  dV - -  vm o + - -  V dV 
dZ 0 v dZ 

Subst i tut ion of equation(30) in to  the  expression above gives 

, .  
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dV v i o  v(vq - - = - +  
dZ D V 

Pressure 

W 

energy 

t h  the  prev ous ly  mentioned assumptions, s u b s t i t u t i o n  o f  the  

equat ion (18) i n t o  t h e  momentum equat ion y i e l d s  

I n  o rde r  t o  o b t a i n  an expression f o r  the  d e r i v a t i v e  o f  t he  

vapor enthalpy,  d i f f e r e n t i a t i o n  o f  equat ion (24) i s  taken w i t h  respect  

t o  Z, and equat ion (26) i s  subs t i tu ted :  

- -  dh &+#Lo-- T2 dP 
P dZ dZ - h f g  dZ 

fg 
A f t e r  t he  expressions f o r  t he  d e r i v a t i v e  o f  t h e  enthalpy and 

q u a l i t y  a re  s u b s t i t u t e d  i n t o  equation (36), t he  pressure g rad ien t  can be 

expressed as f o l  1 ows 
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Temperature 

The temperature gradient is derived from the C1 ausi us-C1 apyron 

equation as  follows 

- = - . -  dT RT2 dP 
dZ h f g P  dZ 

Description of Numerical Scheme 

The f i ve dependent vari ab1 es  , i .e. densi ty ,  qual i t y ,  

ve loc i ty ,  pressure,  and temperature, a r e  coupled by the  d i f f e r e n t i a l  

equations (32 ) ,  (34), (36),  (39), and (40) which a re  f i r s t  order ,  

nonlinear,  and ordinary d i f fe ren t ia l  equations. A computer code has 

been wri t ten t o  solve these equations numerically and simultaneously 

using the  Runge-Kutta integral  method, which needs only proper 

boundary conditions f o r  the f i r s t  s tep  of integrat ion.  

Since the  veloci ty  term appears a t  the denominator of equation (39) , 

the  physical boundary condition for veloci ty  can not be used d i r ec t ly .  To 

avoid this problem, proper boundary conditions a t  the  upstream end 

of the evaporator a r e  determined t o  i n i t i a t e  a l l  ca lcu la t ions  a s  

follows: a new boundary condition f o r  the veloci ty  i s  determined a t  a 

shor t  dis tance away from the beginning of the evaporator, assuming 

incompressible and saturated vapor flow a t  the  temperature corresponding 

t o  the heat pipe operating temperature. Also, the sa tura t ion  pressure 

i s  used f o r  the pressure. Since the  veloci ty  i s  small a t  t h i s  point  

c lose  t o  the  upstream end of the evaporator, boundary conditions 

determined this way a r e  r ea l i s t i c .  The d i f f e r e n t i a l  equations a r e  solved 

by using these boundary conditions. 
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Results and Di scussion 

To inves t iga te  various e f fec ts ,  two types of heat pipes w i t h  sodium 

as the  working f lu id  were se lec ted  f o r  the analysis.  One has an 

ad iaba t ic  sect ion,  the o ther  does not. The dimensions of the heat pipes 

a re  shown i n  Table 1. A1 so, two d i f f e ren t  operating temperatures a re  

chosen such t h a t ,  f o r  low operating temperatures, the pressure drop along 

the heat pipe i s  r e l a t ive ly  large a t  the same heat f lux.  For each 

operating temperature, several cases of heat pipe operation w i t h  

various heat f luxes a r e  considered. Since the s imi l a r i t y  solut ions 

used a r e  val id  only while wall Reynolds numbers a r e  l e s s  than 14, the  

maximum heat f lux  on the  condenser i s  chosen t o  s a t i s f y  th i s  condition. 

Dimension 77 30K 

8.0 
0.0 

22.0 
1.33 
1.33 

10.64 

808OK 

20.0 
10.0 
30.0 

1.35 
1.72 

34.4 

Table 1. Primary Information on Sodium Heat Pipes. 
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Figure 6 shows axial var ia t ions of vapor temperature, 

pressure,  veloci ty ,  and density which a re  obtained from equations 

( 3 2 ) ,  (34) ,  (36), ( 3 9 ) ,  and (40).  The operating temperature of 773 K ,  

and the uniformly d is t r ibu ted  heat t r ans fe r  r a t e  o f  200 watts a re  used. 

Momentum equation (17)  implies t h a t  the var ia t ion o f  pressure i n  the  axial  

d i rec t ion  depends on the relation between the  contributions from 

i n e r t i a  and f r i c t i o n .  T h u s ,  t he  pressure of t he  vapor i n  the  evaporator 

f a l l s  sharply along the vapor passage due t o  f r i c t i o n  and the 

accelerat ion of the  flow due t o  the inject ion o f  mass. The 

corresponding temperature a l so  drops sharply about 5.5 K. Since the 

density of sodium vapor i s  r e l a t ive ly  l o w  a t  the  low operating 

temperature, the velocity i s  correspondingly large t o  t r ans fe r  the 

required mass. The r e s u l t s  show the maximum Mach number reaches 0 . 3  a t  

the e x i t  of the evaporator. 

In the condenser, the  extraction of mass leads t o  a deceleration of 

the vapor flow so tha t  pressure increases,  while f r i c t i o n  reduces the 

pressure. Therefore, the pre,ssure can not recover completely due t o  

f r i c t i o n  loss.  Even though temperature recovery is  achieved i n  

the  condenser, the temperature a t  the  end of the condenser i s  about 4.2 

K l e s s  than tha t  a t  the beginning of the evaporator. Therefore, the  

vapor passage in the heat pipe i s  not isothermal. 

Figures 7 ,  8, and 9 show var ia t  ons of temperature, pressure,  and 

Mach number, respectively,  correspond ng t o  f i v e  d i f f e ren t  heat f luxes.  

A t  the  same operating temperature of 773 K ,  a l a rge r  heat i n p u t  leads t o  

grea te r  pressure and temperature drops, and t o  a higher Mach number. When 
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the  Mach number exceeds about .2, the  var ia t ign of 

la rge  due t o  expansion o f  t h e  vapor. For heat 

wat ts ,  the  vapor can be assumed t o  be isothermal. 

Figure 10 shows tha t  the possible maximum heat 

t o  about 351 watts because the Mach number 

evaporator approaches the  sonic velocity. 

t he  Mach number i s  

n p u t s  of 50 and 100 

ransfer  i s  l imited 

a t  the  end of the 

Figure 11 presents ax1 a1 var ia t ions o f  vapor temperature, 

pressure,  veloci ty ,  and density a t  the  operating temperature of 808 K. For 

this case,  the operating temperature i s  35 K higher, b u t  pressure and 

density a re  twice a s  h i g h  than f o r  773 K. T h u s ,  the  veloci ty  i s  small 

and the maximum Mach number i s  only about 0.2. This leads t o  a small 

pressure drop ,  and the corresponding temperature. drop i s  about 2.8 K. 

Even though the heat i n p u t  i s  twice a s  much as  t h a t  f o r  773 K, a 

comparison o f  temperature drops implies t h a t  pressure and temperature 

drops  mainly depend on the operating temperature. 

In the adiabat ic  section, there  i s  no mass inject ion o r  

extract ion.  Hence, pressure simply decreases due t o  f r i c t i o n ,  and the  

veloci ty  increases very 1 i t t l e .  The contribution of the adiabat ic  sect ion 

i s  the  addition of pressure and temperature drops such t h a t  f o r  the  

h i g h  Mach number a t  the e x i t  of the evaporator, the maximum heat 

t r ans fe r  r a t e  i s  reduced considerably. Figure 12 shows th i s  

phenomenon. The heat input o f  865 watts r e su l t s  i n  a Mach number of 0.7 a t  

the e x i t  of the evaporator. Then ,  the vapor i s  accelerated i n  the 

ad iaba t ic  sect ion,  so the velocity of  vapor approaches the sonic veloci ty  

a t  t he  end o f  th i s  section. 
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In the  condenser sect ion,  as  expected, the  pressure and 

temperature drops a re  recovered, b u t  the  degree o f  recovery i s  small due 

t o  small vapor velocity and large f r i c t i o n  loss  in the longer condenser. 

Numerical r e su l t s  show tha t  the temperature recovery i s  only 0.6 K. 

Variations o f  temperature , pressure, and Mach number corresponding 

t o  s i x  d i f f e ren t  heat f luxes a t  the  operating temperature of 808 K 

are  presented in  Figures 13 ,  14, and 15, respectively.  For heat input up 

t o  200 watts,  pressure recovery i s  not observed, This implies t h a t  the 

pressure drop due t o  f r i c t i o n  in the condenser may exceed the value of the  

i n e r t i a l  contribution. However, the to t a l  pressure drops a re  small, so the  

vapor can be assumed t o  be isothermal. 

Figure 16 shows the  d is t r ibu t ions  of the nonuniform heat f lux on 

the evaporator and condenser. Axial var ia t ions o f  vapor temperature, 

pressure,  veloci ty ,  and density corresponding t o  the d i s t r ibu t ion  in  Figure 

16.a a r e  presented in Figure 17. A t  a short  dis tance away from the  

beginning of the condenser, the s l i g h t  heat extract ion suggests t ha t  the 

axial  var ia t ion of the vapor velocity i s  small. T h u s ,  the  f r i c t i o n  

e f f e c t  i n  this region i s  dominant. The minimum temperature and pressure 

appear in the condenser instead of a t  the e x i t  o f  the  evaporator. A s  

the  heat extract ions increase, the absolute value of axial  var ia t ion of 

velocity increases and the vapor vel oci t y  decreases. The pressure 

drops  a re  recovered gradually. In Figure 18, corresponding t o  the  

d i s t r ibu t ion  in  Figure 16.b, the temperature and pressure drops  a re  

recovered immediately from the beginning of the condenser due t o  the 

la rge  heat extraction. As expected, axial  var ia t ions o f  

temperature, pressure,  veloci ty ,  and density depend on the d i s t r ibu t ions  

of heat input. 
. .  
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Figure 1 6 .  Distribution of heat input on  the evaporator and condenser. 
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In summary of the r e s u l t s ,  t he  degree of pressure recovery 

mainly depends on the heat f lux,  operating temperature, and length 

of the condenser. The higher the heat f lux ,  the lower the operating 

temperature, and the shor te r  the condenser, the  g rea t e r  t he  pressure 

recovery. t he  pressure drop i n  the evaporator can 

be la rge  enough t h a t  t he  e n t i r e  heat p i p e  i s  not isothermal. 

However, f o r  this case, 

Since experimental data  i s  not ava i lab le ,  quant i ta t ive  comparison 

can not be achieved. However, comparison o f  the  general behavior o f  the  

present r e s u l t s  w i t h  published data[2,6,7] gives qua l i t a t ive  agreement. 
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LIST OF SYMBOLS 

area of porous wall of inject ion or suctfon section 

constant pressure spec i f ic  heat of l iqu id  

thickness o f  vapor passage 

dimensionless stream function 

f r i c t i o n  factor  

enthalpy of vapor 

enthalpy of saturated l iquid 

l a t e n t  heat of vaporization 

enthalpy of vapor a t  in te r face  

length of evaporator 

length o f  adiabatic section 

length of condenser 

mass injection o r  suction r a t e  per u n i t  area 

pressure 

qua l i ty  of vapor 

gas constant 

wall Reynolds number 

temperature 

z-component of velocity 

average velocity a t  z = 0 

spec i f ic  volume of vapor 

speci f i  c volume of saturated 1 iquid 
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II 
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spec i f i c  vol ume o f  saturated vapor 

vel oci t y  a t  porous wall 

y-component o f  vel oci t y  

average velocity a t  cross section 

- 
V*O 

V *  

V 

W width of vapor passage 

X vapor qual i ty  

Y coordinate direction normal t o  axi a1 direct ion 

Z coordi nate i n  axi a1 d i  rection 

Greek Symbol 

a momentum factor  

P energy f ac to r  

x dimensionless length coordinate 

Y kinet ic  viscosity 

P density o f  vapor 

Po 

T V  shear s t r e s s  

96 stream function 

density of vapor a t  in te r face  
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